Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy.

نویسندگان

  • C S Tian
  • Y R Shen
چکیده

We have studied the hydrophobic water/octadecyltrichlorosilane (OTS) interface by using the phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS), and we obtained detailed structural information of the interface at the molecular level. Excess ions emerging at the interface were detected by changes of the surface vibrational spectrum induced by the surface field created by the excess ions. Both hydronium (H(3)O(+)) and hydroxide (OH(-)) ions were found to adsorb at the interface, and so did other negative ions such as Cl(-). By varying the ion concentrations in the bulk water, their adsorption isotherms were measured. It was seen that among the three, OH(-) has the highest adsorption energy, and H(3)O(+) has the lowest; OH(-) also has the highest saturation coverage, and Cl(-) has the lowest. The result shows that even the neat water/OTS interface is not neutral, but charged with OH(-) ions. The result also explains the surprising observation that the isoelectric point appeared at approximately 3.0 when HCl was used to decrease the pH starting from neat water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy.

Phase-sensitive vibrational sum frequency generation is employed to investigate the water structure at phospholipid/water interfaces. Interfacial water molecules are oriented preferentially by the electrostatic potential imposed by the phospholipids and have, on average, their dipole pointing toward the phospholipid tails for all phospholipids studied, dipalmitoyl phosphocholine (DPPC), dipalmi...

متن کامل

Nanoporous silica-water interfaces studied by sum-frequency vibrational spectroscopy.

Using sum-frequency vibrational spectroscopy, we found that water structure at nanoporous silica/water interfaces depended on the nanoporous film structure. For a periodic, self-assembled nanoporous film with monosized 2 nm pores occupying 20% of the top surface area, the surface vibrational spectrum was dominated by water in contact with silica, bare or covered by silane, at the top surface. I...

متن کامل

Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structu...

متن کامل

Comparisons of The Structure of Water at Neat Oil/Water and Air/Water Interfaces as Determined by Vibrational Sum Frequency Generation

We have employed vibrational sum frequency generation (VSFG) to investigate the structure of water at neat oil/water and air/water interfaces through the OH stretching modes of the interfacial water molecules. We find that at the oil/water interface the prevailing structure of the water molecules is a tetrahedral arrangement much like the structure of ice while at the air/water interface we obs...

متن کامل

The water-hydrophobic interface: neutral and charged solute adsorption at fluorocarbon and hydrocarbon self-assembled monolayers (SAMs).

Adsorption of small molecular solutes in an aqueous solution to a soft hydrophobic surface is a topic relevant to many fields. In biological and industrial systems, the interfacial environment is often complex, containing an array of salts and organic compounds in the solution phase. Additionally, the surface itself can have a complex structure that can interact in unpredictable ways with small...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 36  شماره 

صفحات  -

تاریخ انتشار 2009